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The energy lost, in the phonon-energy range, by a fast electron beam passing through a polar dielectric
slab is analyzed using classical electrodynamics. The medium is represented by a frequency-dependent
dielectric constant e(w) = €, (wz?—w?) /(wr*—w?) having one single pole at the transverse optical-phonon fre-
quency wr and one zero at the longitudinal-mode frequency wz. When retardation effects are excluded
(¢= o), two kinds of losses occur: bulk losses resulting from the emission of the longitudinal optical phonon
at wy, and surface losses due to the excitation of “surface” vibrations whose frequencies lie within the gap
(wr,wr). Both effects can be obtained exactly in terms of closed analytic functions of w. When retardation is
taken into account, radiation losses take place as well, either through Cherenkov radiation in the bulk of the
slab or through the so-called “transition radiation” occuring at the surfaces of the slab. Here we willstudy the
Cherenkov loss only. Surface radiative losses are treated in part II. Comparison with experimental results for
alkali-halide crystals and with calculations due to Fujiwara and Ohtaka is presented.

INTRODUCTION

HE accuracy with which the energy distribution
of a fast electron beam can be measured has
reached such a point that it is now possible to detect
energy losses suffered by the beam in the optical-
phonon energy range of the irradiated crystal. Thus
Boersch ef al.! obtained high-resolution energy-loss
spectra for 25-keV electrons passing through thin LiF
crystal slabs in the region of the TO-LO energy range
of this material (see Fig. 1). They suggested that the
observed spectrum and particularly its dependence on
the slab thickness could be due to the excitation of sur-
face optical phonons rather than to the interaction
with the bulk longitudinal optical phonon which should
normally dominate for thick crystals.

Recently, Fujiwara, and Ohtaka? attempted to verify
this interpretation by computing numerically a theoreti-
cal loss function previously derived by Ritchie.? In
this theory, the gquasistatic (nonretarded) Maxwell
equations are used to describe the interaction between
the electron and the dielectric slab. The latter is simply
represented by a continuous medium with the fre-
quency-dependent (quasistatic) dielectric function

€0 €xp

(M

€lw)= €w+ ’
2 1—w?/wr?—iy(w/wr)

where € and e, are the static and high-frequency
dielectric constants, respectively, and where wr and
wr=wr(e/€,)'/? are the usual TO and LO phonon-
mode frequencies; v is a small damping constant.
Two kinds of losses are obtained: on the one hand, a
narrow band centered at wz and proportional to the
bulk loss function Im(1/¢€); on the other hand, a broad
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asymmetrical band extending between wr and w;, and
resulting from the coupling of the electron to the surface
vibrational modes of the slab. For slab thicknesses
smaller than ~1000A, surface-mode excitations in-
deed seem to provide the dominant loss mechanism as
suggested by the measurements on LiF.!

The present work has two purposes. First, we want
to reconsider the nonretarded loss function as obtained
by Ritchie® and show that it can be integrated analytic-
ally to provide the exact loss spectrum, at least in the
case where e(w) is real. An imaginary part in ¢, small as
it is for ionic crystals (y=0.04), can only give a slight
correction to this exact result. We found that the
general shape of the spectrum agrees with the one
numerically obtained by Fujiwara and Ohtaka,?
although the amplitude of the surface losses relative to
the bulk ones seems to have been overestimated by
about a factor 2 in their calculations.

The second and main purpose of our work is to
analyze the problem from the full set of Maxwell
equations, radiative effects included. Emission of
radiation by energetic charged particles passing through
matter has been extensively investigated, in particular
by Ritchie and others*5 and by numerous workers in
the Russian literature.® Most of these works are con-
cerned with the photon distribution in the frequency
region corresponding to plasma excitation. Here we
want to apply the theory to the phonon-energy region,
concentrating primarily on the loss function rather than
on the photon production. Two new kinds of losses
occur which are not present in the quasistatic case.
First some energy is converted into ordinary Cherenkov
radiation in that frequency range for which 12> ¢?/e(w),
where v is the velocity of the electron. This bulk effect
is shown to contribute a low-energy tail (iw<%wr) to
the nonretarded loss spectrum. We also establish the
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connection between this result and the theory of the
Cherenkov effect such as presented in a classical paper
by Fermi.” Second, photons are also generated by the
excitation of the so-called “radiative polariton modes.”
Here we use the nomenclature introduced by Kliewer
and Fuchs in their interpretation of far-infrared absorp-
tion of ionic crystals.® Alternatively, one can describe
this mechanism as energy lost through ‘‘transition
radiation.”® This is a surface loss which will be studied
in a subsequent publication.

The paper is divided into four sections. In Sec. 1 the
general solutions of Maxwell’s equations are obtained
and the loss function is defined. Section 2 is devoted
to the derivation of the loss spectrum in the quasistatic
approximation. In Sec. 3 we study the Cherenkov-loss
mechanism. Comparison with previous experimental
and theoretical works is given in Sec. 4.

1. MAXWELL EQUATIONS AND LOSS FUNCTION

In this section, we write the general solutions of the
Maxwell equations for the dielectric slab in the presence
of a uniformly moving charge density —ed(0)d(z—vt),
where g=(x,y) (Fig. 2). The electromagnetic fields
are Fourier analyzed with respect to time ¢ and p:

E(p,3,t) =(2w)_3/dk1/dw E(ky,w,2)

Xexpi(ki-o—wt), etc. (2)

Eliminating the magnetic fields from the Maxwell equa-
tions in the usual way, one finds the following propaga-
tion equations for the component E;=E(k;0,2) k,/k;:

dZE_L 41[‘6
—o2E, = —iki—e!@/Mz 3)
dz? V€
where .
a?=k,2—e(w)(w?/c?). 4)

The component E, is related to E, by

dre
Ez=—ik1/Eldz—i—'i ei(w/v)z, (5)

we
The general solution of (3) is
Ei=ae*+-be**+iki(dme/ evi?) e’ @)z (6)
and from (5)
E.=—i(ky/a)(ae*—be~**)i(4dmew/ ev?E)B% /M= | (T)
where
=kt (/1")8, B=1—cw)@¥/c?), (8
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F1c. 1. Energy-loss spectra of 25-keV electrons in LiF slab
((iepositgzd on carbon substrate, for three different thicknesses
Ref. 1).
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and where @, b are arbitrary integration constants.
These constants are determined by the boundary
conditions imposed at z=-c and by the continuity
conditions of the fields at z=3, (Fig. 2). Here two
cases have to be distinguished according to whether
the quantity a¢®*==£k.2—w?/c? is positive or negative. In
the first case where ay is real positive, we must choose
exponentially decreasing fields outside the slab and we
are then describing the coupling of the electron to the
real, localized phonon modes of the dielectric slab, as
depicted in Fig. 3(a). In the second case for which
@?<0 or ay=108, with 8, real positive, we are dealing
with the interaction of the beam with the so-called
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F16. 2. Geometry of the energy-loss experiment. The electron
is moving along the z axis, in the 4z direction.
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Fic. 3. (a) Boundary conditions to be imposed on the fields.
For the region ao>0 of the (w,ke) plane shown in (c) the primary
electron field exp[7(w/v)z] has to match exponentially decreasing
fields outside the slab. (b) For ap=18y, §0>0, we have radiation
flowing out of the slab excited by the electron field.

“virtual” or “radiative modes”® which induce oscilla-
tory fields outside the slab. This case is sketched in
Fig. 3(b). Referring to the notations of Fig. 3(a),
where >0, the continuity conditions of E,(z) and
eE,(3) at =3, write

g @020 — g @20 — 20 0 Y (a )
0 — 220 — 20 @020 a/
ikl 'ikle ?:klé
0020 I J— 220 0 b’
(61} o a
’I:klé ’iklé ’ikl
0 £20 — —az0  —g—a0z0| | b’
L o o g J O )
ne—i(wlv)zo
drre nei(wlv)zo
2 ,ye-—i(w/v)zo
,yei(wlv)zo
where

n=k(1/e£2—1/5%), v=(0/0)(B%/E—Be*/E?),

the index 0 meaning that e has to be replaced by 1 in
the corresponding quantity. The solutions of (9) are

(10)

a=0JA, d/=8y/A, ¥=Ay/A, §'=Ay/A, (11)
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where

€ 1\2 € 14\?
A= —kﬁe—“"f‘l:e“’*(— + —) ——e“"‘-"(- — -—) ] , (12)
a o o ap
4re e 1 ke
e
2 a  ap o
w\ L
X exp[: — <2a+ao+i—>—:|
v/ 2
1 € ke w\ L
oY) o)
ay  a a v/ 2
€ ks w\ L
—2—<7—in~> expl:—(ao——i—)-]} , (13)
a Qo v/ 2
41re € 1 kj_?’]
Ag=— —kle—“"L{ -—(~ - ~—>(7+'i———)
v 64 [} (&2
w\ L 1 € ki
ol -2 22
. /2 oy« ap
w\ LN
Xexpl:(a-f—i—)—}} , (14)
v/ 2

Apr(0)=—=Au(—7), Ap(@)=—Aw(—2v). (15)

The case sketched in Fig. 3(b) is similar. The coef-
ficients A, As, Aar, Aw, Agrr appropriate to this case can
be obtained from the previous ones simply by sub-
stituting —6o for ao in (12) to (15), respectively.

Once the fields are specified, one can obtain the
energy loss suffered by the particle in two ways. Follow-
ing Fermi’s method” one can compute the flux of the
Poynting vector through a cylinder surface of radius R
centered on the path of the particle, thus obtaining the
energy lost outside the cylinder. When R is of the order
of atomic distances, what is lost inside the cylinder can-
not be computed with classical electrodynamics of
continuous media. Another definition, completely
equivalent as we shall see, is to identify the energy loss
to the work done by the fields on the particle:

-+ 1
Wiota1= / dz e(E—l— —VXH)
—0 c z2,p=0,t=2/v

+o0
=] dz el (0=0,t=2/v), (16)

where the z component of the field has to be taken at
the actual position of the electron. There is no need to
substract the vacuum field of the electron from this
definition as this field does not do any work. Introduc-



1 ENERGY-LOSS SPECTRUM OF FAST ELECTRONS:- . 1

ing the real part of (2) into (16), one gets
Wiota1 = (2m)3

o0
XReI:/dkl/dw/ dz eEz(kl,w,z)e‘“"’/”)z] a7

o o0
Wiotal = / 2wkidk, / dw P (kuw) , (18)
0 —o0

or

where one has defined the classical probability P(k.,w)
for the electron to lose the energy #w:

+o g
P(krw)=2mr)3 Re[/ dzh-Ez(kl,w,z)e‘“‘”/”){l . (19)

w

This classical limit of the true quantum loss function
is meaningful only insofar as one can treat the medium
as continuous, i.e., when the wave vector &, is much
smaller than the inverse of atomic distances. Ac-
cordingly the contribution to the &, integral (18) coming
from values of &, larger than this classical limit K.~1
A-' must be disregarded. Actually the part of the
integral

/ kj_dkj_P (k_(,,w)
K¢

provides the energy which the electron loses within a
region of radius K, around its trajectory as can be
seen by changing the integration variable from &, to
p=Fk,~'. As emphasized by Fermi,” this contribution
cannot be treated classically.

In the experiments of Boersch ef al.,' on the other
hand, one does not collect electrons which have been
scattered to an angle larger than a certain small value
6p~10—* rad off the axis of the primary beam. This
provides an experimental limit to the momentum trans-
fer determined by the energy and momentum conserva-
tion equation %2K?%/2m= Ef¢% where E, is the energy
of the incident beam. For E¢~25 keV, one finds that
KKK, and, therefore,

K o0
W=2r / kidk, / fiwP (kyw)dw (20)
0 —

should provide a good representation of the observed
total loss. .

Substituting (7) into (19) we find for the loss function
P(ky,w), taking (15) into account (and writing % for k,),

P(k,w)=Ps(kw)+Prkw), 1)
where
ek 1/ e (ao—ilw/v))z0
Pi(kyw) == 2m)7* Im| ——— —————-"Aq
s(k,w) (2m) ml:hw A(ao(ao—i(w/'”)) '
ZMAaI+(Same withv— —v))] (22)
ala—i(w/v))
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and

2L 2
Im—.
2m2hv? eg?

Pp(kw)=— (23)

These are the surface and bulk loss probabilities, re-
spectively. Using (13) and (14), Ps(k,w) is given ex-

plicitly by
'—'62 1 2 1 1 772 w
Pgs(kyw)= Im—{ — ~|:ey(— — w)+e__ ~:l
whov A/ al £2 £0? ag? v
wL eynw ol 1 1
X cos— 44— — sin— -I—'y(— — —>
v Qo U v 2 g

1 € 1 €
€]
Qg (4] Qo o
en?or/1 € 1 €
e e [
Qg U Qo (¢4 Q0 a

(25)

where
A'=1/av—1/a)e2L—(1/ap+1/a)eL.

This is the correct surface loss function for the case
where ay is real positive. One obtains the loss due to the
excitation of virtual or radiative modes by substituting
—1i8o= —i(w?/c2—k?)'/? for o in (24).

2. QUASISTATIC LOSS SPECTRUM

Taking the limit ¢ —, one has a=ay=Fk, £2=Fk2
+w?/v? and, after some simplification, the previous
results reduce to

e? 2k 1—e
PNR= Irn[
2r*hv? (k2Hw?/v?)? €
% 2(e—1) cos(wL/v)4 (1 —e)etl+-(1 —¢)2e*L
(1—€)% o — (14-€)%*E }
2

e2L 1 1 (262)
PpNR—— Tm-. (26b)

2m2ho? k24-w?/22 €

This is the loss function obtained for the first time by
Ritchie? in his treatment of losses due to the excitation
of electronic plasmons in metallic foils. The only dif-
ference with the present case is in the form of the dielec-
tric constant and in the energy range of interest. The
same result has been rederived later, in particular by
Hattori and Yamada'® and, more recently, by Fujiwara
and Ohtaka.?

Now one can define the nonretarded loss spectrum

WNR() =27 f kdk PNR(k). @7)

(11906%. Hattori and K. Yamada, J. Phys. Soc. Japan 18, 200
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F1G. 4. On this drawing are plotted both the dispersion curves w, (%), w—(k) for the surface phonon modes of the slab and the dielectric
constant as a function of frequency. One has e(wz) =—1.
The integration is trivial for the bulk loss (26b) and where
gives 27, 2 D+=(1_e)e_kL/z"_(l“l'f)ekL/Z; (33)
e v 1
WsNR(w) = — 1n<1<2— +1> Im-. = (28) D_=(1—e)e 2 —(14-€)etL?, (34)

2

2w ho? w €

This bulk loss spectrum has the Lorentzian shape

S e <x= 1) 29)

)
€ €& (22— Hy2? wr

strongly peaked at w=w;, (x=%z) and, of course, cor-
responds to the excitation of the longitudinal bulk
phonon by the passing electron.

The nonretarded surface loss contribution

K
W N®(w) =2m f kdk PsNE(k,w) (30)
0

has been estimated numerically in Ref. 2. If v is small
(y==10-2 for LiF) then (29) contributes but a & func-
tion at w=wz and one can expect that (30) provides
the main loss mechanism. Here we want to perform
analytically the k integration involved in (30). This
can be done, at least when e is real, in the following
way. If y=0 then the expression in square brackets in
(26a) is a real function of k. Therefore, the only con-
tributions to (30) arise from the poles of PsNE, i.e.,
from the zeros of its denominator

D) = (1— €)%+ — (1) %L
D(k,w) =Dy (k,w) D—_(kyw) ,

€Y

Writing 32)

the equations D;=0 and D_=0 precisely define the
dispersion curves w_(k) and w,(k) for the two (sym-
metrical and antisymmetrical) surface modes of the
slab, respectively (Fig. 4). Explicitly, we have

1 1—e
D_=0: k+=—L—ln<1—) for w>wr, (35)

+e

1 e—1
D,=0: k_=-—ln( ) for w<wr, (36)
L 1+e€

et+1\?
)
€11
is the limiting frequency of the two surface modes
(see Fig. 4). In order to obtain the contribution of those

two simple poles [(35), (36)] we make use of the
theorem

where

37)

1 1
lim =PP
10 X —Xotin X—X,

Fird(X —Xo) (38)

or, rather, a straightforward generalization of it

1 1
lim — =PP— Fin ),
10 f(x)Fin f(®) i

1
——B(x—x,) )

39)
FHER] (



B.
16°:
B
10’
A’
1

ENERGY-LOSS SPECTRUM OF FAST ELECTRONS:. - I

3593

Wr

I L

F16. 5. Nonretarded loss spectrum for LiF on a semilogarithmic scale. The parameters appropriate to this crystal are e,=1.92,
€0=9.27, wr=35.78 108 sec™!, v=0.04. The functions (28), (42), and (43) are plotted separately as curves 4, B, C (4’, B’, C’). The total
loss spectrum is the sum of the three curves 4, B, C (thickness L=400 &) or 4’, B/, C’ (L="700 &). Surface losses would be only slightly
perturbed by the introduction of a small damping v in the dielectric constant. Units: e2/r 2.

where f'(x;) is the derivative of f(x) at the simple
pole x=x;. Thus, we write e(w)=-¢r(w)+ier(w) and
obtain

1 1 2w
lim =PP — o(k—Fk_)
1~0 D(k) D(k) LD_|D_|

if w<wr or e<—1, (40)

and

1 1
lim =PP +
=0 D(k) D(k)  LD.|D.|

2w

3(k—ky)

if w>wr or e —1. (41)
Introducing (40) and (41) into (30), and noting that

for e real the principal parts of the integrals have a
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vanishing imaginary part, the Vintegration is now
trivial and we finally get

e Ank Lt e—1 oL
WNB(w) = — — cos>—
whv? (k_24w?/v?)? e(e+1) 29
XO(K—k) if wr<w<wr (42)
and
e Ark LY 1—e wL
WsNB(w) = — sin®>—
whv? (ki w?/v?2)? e(e+1) 2v
XO(K—ky) i wr<o<or, (43)

where 6 is the step function

0(x)=0 for x<0
=1 for %>0.

Formulas (42) and (43) essentially give the exact sur-
face loss; the introduction of a small, frequency-
independent damping constant v in the dielectric con-
stant would only slightly perturb this result. For
example, it will somewhat smooth out the sharp dis-
continuity at w=w; and will provide some tailing for
oSwr and w>wr. The tailing at w2 wz is of course
negligeable compared to the resonant bulk loss (28)
while the tailing at wSwr may be comparable to the
Cherenkov loss which is studied in the next section.

In Fig. 5, the functions (28), (42), and (43) are plotted
separately on a semilog diagram for LiF crystal slabs.
Figure 6 gives the same on a linear scale. Figure 7 shows

the shift of the surface loss peak when the slab thickness
increases. This linear shift is easily understood when
analyzing (42) and (36) as a function of L. Indeed,
W sN®(w — wr) is proportional to

k21
F(k)= ——— L tanh3k L, a=—.
(k_2+a?)? 2

In the region of interest, k. L1 and e*I~1,
tanh3k_L~%k_L. Therefore F(k_) is maximum where
k_3/(k_24a?)? is maximum, ie., when k_%2=3q% In-
verting (36), one finds for the frequency of the maxi-
mum surface loss

(44)

1+%\/§60(er/?) 1/2
oo ) 5)
14+3V3e, (wrL/v)
or
wy~wr[ 14+3V3(eo— e, )wrL/v)]. (46)
This gives the differential shift
dhwr/dL=3%V3(eo— €,,) hwr(wr/v)
~1.5X10-% eV/(100 A). (47)

Figures 5-7 and Egs. (46) and (47) are discussed in
Sec. 4.

3. CHERENKOYV LOSS

In this section, we study the exact form for the bulk
loss, including retardation effects. One has, for the bulk
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Fic. 7. Shift of the frequency
at which the maximum surface
loss occurs when the slab thickness
is varied. The shift is nearly
perfectly linear as explained in the
text. Observed shift of the maxi-
mum loss frequency is given by
the three experimental points
indicated.
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loss spectrum

K
WB (w) =2’Il"/ kdk PB(k,w) y (48)

where P is given in (23):

L B (K kdk
Im— [ —.
vt e ), £

We(w)=— (49)

From this formula, it is obvious that when e(w) is real,
the only contribution to the integral comes from the
poles of the integrand, i.e., from the locus of points in
the (w,k) plane defined by

E=k—(@/C0Y)—D=0.  (50)
This relation can be satisfied only if
.02
e— —1>0. (51)
62

Referring to Fig. 8, we see that this condition defines the
so-called Cherenkov band! of frequencies we<w<wr
within which the velocity of the passing electron is larger
than the phase velocity associated with the lower
polariton branch given by a=0 or w/k=c/y/€¢ [see
Eq. @]

The threshold frequency we is defined by (e being

1,
real) e(w0g) =/
62/1)2_60 1/2
wc=wT(—————> .
/v — e,

1 7. D. Jackson, Classical Electrodynamics (Wiley, New York,
1962), p. 499.

or

(52)

- v T ' °
4 6 8 L (100 A)

Relation (50) defines a curve denoted by T'in Fig. 8-
The part of this curve within region Ry, to the left of
the line w=kec, corresponds to Cherenkov radiation
flowing out of the slab [ao=180, see Fig. 3(b)]. The part
of T' in region L;, to the right of w=kc, represents
Cherenkov light trapped into the slab as a result of
total internal reflection at the slab boundaries. Indeed,
from Eq. (50) one checks that I' crosses the line w=*kc
at a point such that e=1-c¢?/v2. Therefore, the angle 0
of the Cherenkov cone defined by cosf=c/A/(€)v is just
the critical angle for total reflection satisfying
sinf=1/4/¢ (see Fig. 9).

Now we proceed to evaluate (49). Again, using (39),
we write

1 1 i
lim — =PP(—)+ —o(k—k.y), (53)
e[—>0 22 22 2k
where
ko?=(w?/v*)(e(v*/c*) —1). (549
One finds, when e is real,
I’VB((.O) =0 if w<wc, (55&)
e? Lt e(v?/c?)—1
Wp(w)=— —_——
: who® 2 €
[0( ) 0( K >] (55b)
X] 0(w) —0 w— —
e(v?/c?)—1
if
Ko
we<w wr,

<
e(v?/c?)—1



3596 A. A. LUCAS AND E. KARTHEUSER 1

W

F16. 8. Region of the (,k) plane where the Cherenkov condition (51) is satisfied (shaded area). Curve T, given by Eq (50), provides
the dispersion relation for the emitted Cherenkov radiation. In region R;, the radiation flows out of the slab whereas in region L,, the
Cherenkov cone undergoes total internal reflection at the slab surfaces.

and When € has an imaginary part, then the expression
e Lr ([ K*(v?/w?)

Wae) == — il ——— 11| oK)
Th? 4 1—e(v%/c?) We(w)=— L Im[- —-In [———— +1} :l (56)

whv? €2 1—e(¥/c?)

€0— €y . .

X ~0——6(1 —w/wr) if w>wr. (55¢) is valid everywhere: 0<w< . Results (55) and (56)
€0€xo are shown in Fig. 10 as curves 4 and B, respectively.

The broken curve C in this figure represents the non-
retarded bulk loss spectrum (28).

It is seen that the part of the energy lost in the bulk
of the slab through the Cherenkov mechanism is peaked
for wSwr where it dominates the loss to longitudinal
phonon excitation. However, the height of the peak is
three orders of magnitude smaller than the longitudinal
peak so that the Cherenkov loss can only modify the
low-energy tail of the nonretarded bulk loss spectrum.

We want to close this section by establishing the con-
nection between our loss spectrum (55) and (56) and
the results for the total bulk loss obtained long ago by
Fermi.” According to (20), the total bulk loss is given by

€=1
Fi1G. 9. Total internal reflection of the Cherenkov light coneat the e
slab boundaries. The angle ¢ of the cone defined by cosf= (c/v) €12 Wgtet= f dw hwWp(w) (87)
is just the critical angle for total reflection when e=1--¢%/2%. —
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and can be separated into two parts:
wT o

W3t°°=2/ WB(w)hwdw+2/ W p(w) frcodw
g wC

=WerB+Wyro® (58)

corresponding to losses through the Cherenkov radia-
tion and through the coupling to the LO phonon,
respectively.

Let us introduce (55) into (58). Two cases have to
be distinguished!?:

Case 1: €,<c*/v?*<e. Here the lower limit w¢ of
the Cherenkov band is w¢=0 and we have

e? o7 ¢(v¥/c?)—1
WerB= — / wo—————dw.
0

(59)
2 €
The integration is elementary and gives

eszz
WerB=—

92 1
{— S+ —{1-(-a/e)

292 €
Xin(1— ew/eo)]] . (60)

2 Tf e,>¢2/12, then the Cherenkov band extends at least to the
next resonance of the dielectric constant, for example up to some
characteristic electronic transition frequency in the visible or
ultraviolet. Generalization of the theory to this situation or to
the case where e(w) has several resonances in a given frequency
range, is straightforward.

Case 2: ¢2/v*> €. Then we>0 is given in (52). One

finds
62(.07’2 €9
(-3
20?2 €0
1—e,(v%/c?) 2
><|:——ln< - ew_>] . (61)
€ — (¢%/0?) c?

In both cases, integration of (55¢)7is trivial and gives

e%wr? €p— € K%?
WLoB= _— ) 111(—'"—2 +1> . (62)

202 wr,

WerB=—

€0

One sees that contributions (60) or (61) are indepen-
dent of the cutoff momentum transfer K. They represent
true radiation transporting the energy lost by the beam
at an arbitrary, large distance K—! from the electron
path (here e is real). The longitudinal loss (62) on the
contrary goes to zero with K which means that the
excitation energy of the LO phonon remains localized
around the beam axis.

Results (60)-(62) are in complete agreement with
expressions (37), (36), and (30) in Fermi’s paper’ pro-
vided one makes the replacements

€1, wr’— w,?/(e0—1)
and
317 & 1
K?— — —.
4: E()—]. b2
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This somewhat arbitrary relationship between our limit-
ing wave vector K and Fermi’s cylinder radius & is due
to the arbitrariness involved in both cases when un-
related sharp cutoffs are introduced either in K space
or in real R space.

4. DISCUSSION AND CONCLUSIONS

The classical processes by which a fast-charged
particle loses some of its energy in passing through a
polar dielectric slab can be divided into bulk loss pro-
cesses, proportional to the path length, and surface
losses, essentially independent of the slab thickness. In
turn, each of these classes contains nonradiative and
radiative mechanisms: the LO resonant loss and the
Cherenkov radiation on the one hand, the localized
polariton excitation and the radiative or virtual-mode
excitation (yielding “transition radiation”) on the
other hand.

In this paper the bulk losses have been thoroughly
investigated while the surface losses have been treated
in the quasistatic approximation. The main results con-
cerning LiF can be listed as follows:

(a) For slab thicknesses up to a few thousand
angstroms, the surface-loss spectrum, extending from
wr to wz, dominates the bulk losses (see Figs. 5 and 6).
The shape of the spectrum, in particular the existence
of a peak close to wr and of a dip between w; and wy,
agrees with the numerically computed spectrum of
Ref. 2. However, we do not find, in the integrated sur-
face loss, any contribution which would reduce the LO
peak at wy [as suggested by the analysis of Ref. 2,
Eq. (4.2)]. Rather, the LO peak is enhanced by a maxi-
mum in the surface loss occurring very close to wz
(Fig. 5).

(b) The maximum of the surface loss is nearly in-
dependent of the slab thickness L whereas its position
shifts linearly with L.!3 These features are also exhibited
by the experimental loss peak! (see Fig. 7).

(c) A meaningful comparison between our theoretical
curve of Fig. 6 and the experimental one in Fig. 1 could
be made in the following way. With the loss functions
WpNR(w) and WsNR(w) [Eqs. (28), (42), and (43)]
which are plotted in Fig. 6, one can define an observable
loss spectrum by

1 wt+A
W(w) = = / [W 5N )+ W R (') Jdo’,  (63)

w—A

13 In Ref. 2 the maximum computed surface loss seems to depend
on the slab thickness and its frequency shift is not clearly defined.
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where =A% represents the accuracy with which the
detector can measure energy losses. In the experiments
of Boersch et al.,! one has A%#~0.01 eV. The integration
in (63) will smooth out any sharp feature of the loss
functions. Thus the sharp peak at wr in WsN® will be
replaced by a shoulder of the kind observed in the ex-
perimental spectrum around 0.08 V. Also the strong,
narrow bulk loss peak at w; will be averaged out and
will give a broad peak in W (w) similar to but somewhat
bigger than the observed bump in the high-energy tail
of the experimental curve around 0.1 eV.

In part II of this work, we will present a detailed
comparison of this kind but using the full retarded loss
spectrum. ‘

(d) The Cherenkov bulk loss contributes a low-energy
tailing (w<wr) to the spectrum. Referring to Eq. (24),
one sees that a similar effect should result in the radia-
tive surface loss (denominators £2) in addition to the
transition-radiation effect (resonant denominator A).
However, one cannot assert the relative efficiency of
these various mechanisms before one has explicitly
computed (24).

The identity of our results (55) and (56) concerning
the total bulk loss with those of Fermi” illustrates the
equivalence of the two definitions of the energy loss:
either as the work done by the fields on the charged
particle or as the flux of the Poynting vector through a
closed surface around the particle trajectory. Of course,
if one is interested in obtaining the photon emission
alone, the second method seems more natural.

(e) We have not been able so far to obtain an analyti-
cal result for the radiative surface losses. Only the con-
tribution from the excitation of real, surface polariton
modes (o and o real) can be obtained exactly if € is
real and this provides a useful check for computer cal-
culations on the transition radiation. This will be
treated in a subsequent paper.

(f) An interesting situation arises when, like in the
displacive class of ferroelectrics, a transverse optical
mode frequency is strongly temperature dependent. If
surface-phonon excitations do provide the main source
of energy loss, one should be able to observe according
to (46) a Curie-type behavior of the maximum loss
frequency in thin ferroelectric slabs like BaTiO;. Also
in these materials of very high dielectric constants, the
Cherenkov zone extends far in the high-frequency
region even for relatively low electron velocities, so that
the Cherenkov loss will give a significant contribution
over a wide energy range.



